

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、中國科學技術大學碩士學位論文壓縮感知人臉識別`姓名:平強申請學位級別:碩士專業(yè):信號與信息處理指導教師:俞能海;莊連生2011-05-02ABSTRACT III ABSTRACT As one of the hottest research directions in the field of computer vision and bioinformatics, face recognition has provided power
2、ful technical support for the informatization process the core applications in public security and human-machine interaction, which has been capturing special attention from both academia and industry. Having devoted muc
3、h effort and spent a large amount of funding on face recognition, the researchers are still not satisfied with its slow development in the past decades. Even today, further development of face recognition is still seriou
4、sly challenged by complexity of illumination, variability of pose and expressions, and randomness of occlusion. Most of the existing face recognition algorithms are based on the classical statistical learning theory,
5、which has been proved to be effective in solving low dimensional problems where sufficient training samples are available. However, the classical statistical learning theory cannot well handle problems with high dimensio
6、nal data due to the characteristic of face images. Meanwhile, the number of collected training samples is severely restricted in real applications. Due to the above aspects, the classical statistical learning theory is n
7、ot very suitable for face recognition applications. In 2006, Donoho and Candes proposed a novel framework named compressed sensing (CS). This framework has aroused another upsurge in face recognition since it’s introduce
8、d into the face recognition area, and one of the most outstanding algorithms based on CS is Sparse Representation-based Classification (SRC). Compared with most existing algorithms, SRC implements statistical inference b
9、y directly exploiting the sparse distribution of high dimensional data, which can handle the curse of dimensionality effectively. Moreover, SRC implements face recognition via image pixel values and avoids information lo
10、ss thanks to the pre-processing procedures. SRC requires exact alignment between each test image and training images. Nevertheless, variation of poses and expressions leads to the error on alignment and thus the SRC’s pe
11、rformance may decrease. This fact severely restricts SRC’s generalization ability to real-world face recognition problems. This dissertation focuses on the research of CS-based face recognition algorithms that handle pos
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 壓縮感知人臉識別`.pdf
- 基于壓縮感知人臉識別算法研究.pdf
- 基于壓縮感知人臉識別技術的研究.pdf
- 基于壓縮感知的人臉識別算法.pdf
- 基于壓縮感知理論的人臉識別.pdf
- 基于壓縮感知算法的人臉表情識別.pdf
- 基于壓縮感知的人臉識別方法研究.pdf
- 壓縮感知及其在人臉識別中的應用.pdf
- 基于壓縮感知理論的人臉識別方法研究.pdf
- 基于貝葉斯壓縮感知的人臉識別研究.pdf
- 基于壓縮感知的人臉識別系統(tǒng)研究.pdf
- 基于壓縮感知的人臉識別算法的對比研究.pdf
- 基于壓縮感知的人臉識別系統(tǒng)設計及實現(xiàn).pdf
- 基于壓縮感知和支持向量機的人臉表情識別.pdf
- 基于壓縮感知的實際環(huán)境人臉識別技術研究.pdf
- 基于張量方法和壓縮感知理論的人臉識別算法研究.pdf
- 基于壓縮感知的改進型人臉識別算法的研究.pdf
- 基于模糊支持向量機與壓縮感知的人臉表情識別研究.pdf
- 人臉圖像的壓縮與識別.pdf
- 基于壓縮感知的人臉跟蹤的研究.pdf
評論
0/150
提交評論